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Abstract—This paper describes a power amplifier, employing
parallel-connected laterally diffused metal–oxide semiconductor
(LDMOS) devices with optimized channel widths and bias offsets
to approximate ideal square-law behavior of the overall transcon-
ductance in class-AB operation. The proposed method results in
a significant linearity improvement over a large dynamic range
in comparison to a conventional amplifier in class-A or class-AB
operation. Measurements demonstrate an improvement of 20 dB
in third-order intermodulation distortion and 10 dB in adjacent
channel power ratio for wide-band code-division multiple access
at 12-dB output power backoff from the 1-dB gain compression
point. Consequently, this amplifier can be operated more toward
the compression region with better linearity and drain efficiency
compared to a conventional LDMOS power-amplifier design.

Index Terms—AM–AM, AM–PM, base stations, efficiency,
intermodulation distortion, LDMOS, linearization, power
amplifiers.

I. INTRODUCTION

L INEARITY is one of the major aspects in base-station
RF-power amplifier design. Currently, laterally diffused

metal–oxide semiconductor (LDMOS) is the technology of
choice in this market, providing high gain and good linearity
compared to other semiconductor technologies [1]. However,
the stringent linearity requirements for the new complex
modulation schemes, like wide-band code-division multiple
access (WCDMA) still require an LDMOS-based amplifier to
be operated 10–13 dB below the 1-dB gain compression point
(P1dB). When considering the requirements for driver stages,
the situation is even worse. For these amplifiers, typically
a class-A operation is needed in order to meet the linearity
specifications. This is in spite of their inherent lower efficiency
and larger active die areas needed to provide the desired output
power.

To improve on both linearity and efficiency, several lineariza-
tion techniques have been developed, such as feed-forward and
adaptive predistortion [2], [3]. The complexity of these solu-
tions generally results in large space consumption on the printed
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circuit board, a long design time, and high cost. In this paper,
we will discuss a linearization method yielding a considerable
reduction in intermodulation distortion (IMD) and adjacent
channel power ratio (ACPR) for FET power amplifiers without
significantly increasing circuit complexity. To accomplish this
from a device point-of-view, Sections II and III provide the
theory and technique for square-law approximation of the drain
current ( ) versus gate voltage ( ) relationship near the
cutoff region [4]. This proves to be essential in obtaining high
linearity over a wide dynamic range in class-AB operation of
the amplifier. Note that the proposed linearization technique
differs from conventional techniques since the linearization is
incorporated in the device core of the amplifier itself, rather
than by separate circuit solutions. To optimize the relatively
large number of design parameters involved, Section IV
discusses a dedicated linearity optimization protocol developed
for this purpose. This optimization protocol is based on the
minimization of AM–AM conversion (modulation of output
signal amplitude as function of input signal amplitude) and
AM–PM conversion (modulation of output signal phase as
function of input signal amplitude) and relates the IMD to
the large-signal as function of power using the complex
power series representation (CPSR) [5], [6]. Consequently, full
amplifier characterization of gain and linearity is combined in
a single instrument (network analyzer) test setup and speeds
up the optimization process considerably. Finally, Section V
compares the measurement results of the ultra-linear class-AB
LDMOS power amplifier against the stringent specifications of
third-generation (3G) wireless networks.

II. L INEAR OPERATION OFCLASS-AB AMPLIFIERS

In conventional RF power-amplifier configurations, the
loading conditions and bias operation point of the active device
both control the linearity of the complete amplifier [2]. In
LDMOS experiments [1], it has been demonstrated that, for
a class-AB operation, the choice of the quiescent bias point
determines the amplifier linearity in the backoff region. In fact,
a sharp optimum for the third-order intermodulation (IM3)
product exists for a particular gate-bias voltage, yielding a
rather linear gain characteristic over a wide dynamic range.

In order to develop required theory and linearization tools
for ultra-linear LDMOS power amplifiers, IM3 is analyzed as
a function of power using a power series analysis [2]. This ap-
proach provides the required insight for the device linearity in
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Fig. 1. Strongly simplified model of an LDMOS device.

Fig. 2. MeasuredI versusV characteristic of a 12-mm LDMOS FET
and its derived Taylor coefficients versusV at a drain voltageV = 26 V.

class-AB operation. Fig. 1 shows a strongly simplified LDMOS
model used for the analysis. Note that this model assumes that
the input power is directly related to the voltage at the gate.
Furthermore, the model only takes into account the predomi-
nant source of distortion in an FET amplifier, i.e., the nonlinear

– relationship [7], [8]. This can be modeled by means of
a Taylor series expansion around the bias point as follows:

(1)

Fig. 2 shows the – relationship and its derived Taylor
coefficients of a Philips LDMOS device with a gatewidth

mm at a typical drain voltage ( V) used in base
stations. In order to obtain a behavioral model of the drain cur-
rent source, we have fitted a thirteenth-order polynomial func-
tion to the third derivative ( ) of the measured versus

, ranging from 4.0 to 5.8 V. Fig. 3 shows this function to-
gether with and , which are calculated by integration
and derivation, respectively. By substituting a two-tone signal

into (1), we obtain power series
expressions at frequency components throughout the spectrum
[2]. Hence, the magnitude of IM3 as function of input voltage
( ) can be expressed as the quotient of the nonlinear current
at the intermodulation frequency and the nonlinear
current at the fundamental frequency as follows:

(2)

Fig. 3. Modeledg , g , andg of a 12-mm LDMOS FET atV =

26 V.

Fig. 4. Predicted IM3 versus input amplitudeV of the two-tone signal as
calculated by (2).

Note that (2) only contains odd-order Taylor coefficients and its
numerator indicates which terms should be minimized to obtain
the highest amplifier linearity. Due to the fact that the numerator
depends on theorder of the power series analysis applied, it is
essential for a reasonable power range to include at least terms
up to the fifth degree [9]. In the following, we will use (2) to
investigate the relation between the gate bias voltage and the
IM3 distortion level as function of input power.

If we consider the modeled odd-order Taylor coefficients
shown in Fig. 3, we can observe that and become
zero close to V. According to (2), this will result in
minimum IM3 as function of input voltage amplitude, while
IM3 will be higher for other values of . To illustrate this,
Fig. 4, shows a low IM3 versus relationship at V.
On the other hand, exact cancellation of IM3 will only occur
at a particular value of if the contributions of the third-
and the fifth-order components are equal and have opposite
signs. What we actually want is an overall decrease in IM3
independent of , which can only be obtained theoretically if
all the higher odd-order Taylor coefficients are zero. In support
of this theory, Fig. 5 shows the measured IM3 versus output
power of the 12-mm device at different gate-bias voltages. It
demonstrates that IM3 has indeed an optimum for low powers
at V, which is in agreement with our foregoing
analysis. In comparison with the class-AB IM3 results in Fig. 5,
the IM3 in class-A operation yields superior linearity in the
low-power range. This is because, in a class-A bias condition
(around V), all the higher order Taylor coefficients
tend to go to zero (see Fig. 2) and favors the current use of
class-A driver stages in LDMOS.
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Fig. 5. Measured IM3 versus peak-envelope output power for a conventional
class-AB LDMOS power amplifier atf = 1:95 GHz and�f = 200 kHz for
different gate-bias conditions.

In conclusion, the previous analysis indicates that, in a bias
point-of-view, the best class-AB power-amplifier linearity is ob-
tained if its odd-order derivatives ( and , etc.) are small
and is reasonably large. Section III will exploit this feature
in a novel LDMOS power-amplifier design.

III. T HEORY OF A NOVEL CLASS-AB FET
POWER-AMPLIFIER DESIGN

The specifications for wide-band code-division multiple-ac-
cess (WCDMA) base-stations demand that the power amplifier
must handle signals with a large peak-to-average ratio (crest
factor), typically of 10 dB [10]. We can interpret this for having a
low IM3 as function of input power in the output power backoff
(OPBO) region ( 10 dB). As discussed in Section II, we found
an optimum bias point related to the odd-order Taylor coeffi-
cients of the transconductance nonlinearity, yielding a low IM3
as function of power in the OPBO region. Consequently, a fur-
ther linearity improvement can be obtained by adjusting the
shape of the transconductance as a function of.

In previous work, the derivative superposition (DS) method
has been proposed to minimize the IM3 of a class-A ampli-
fier using parallel-connected high electron-mobility transistor
(HEMT) or MESFET devices [8], [11]. DS is based on the can-
celing of itself rather than the minimization of the numer-
ator of (2). More recent work on multiple gated RF CMOS de-
vices [12] again only focuses on the minimization of versus
gate voltage. Note, however, that the power or Volterra-series
analysis approach is, in principal, only valid at a single bias point
and that statements about IMD versus signal power should al-
ways take into account the higher order derivatives (3) of the
nonlinearity. This is especially true when the device is operated
in a highly nonlinear region like the cutoff region of a MOSFET
[2]. Consequently, in the case of our class-AB amplifier, focus
must be placed on the lowering of the total contributions of,

, etc. with respect to (2) in order to achieve a linearity im-
provement over a wide dynamic range. In fact, by doing this,
we approximate the square-law behavior of the- cur-

Fig. 6. Distributed amplifier design using four parallel LDMOS devices with
different gatewidths and gate bias.

rent relationship in the class-AB (cutoff) bias region. The DS
method will be employed as a tool to create the desired charac-
teristic. Ideally, the best approximation would include an infini-
tively large amount of devices placed in parallel, but for prac-
tical reasons, we will limit ourselves to four.

Fig. 6 shows a schematic circuit implementation of this
technique, in which four LDMOS FETs are placed in parallel.
For each of these devices, the variables are the gatewidths
( ) and the gate-bias offsets ( ) with respect to
to control the transconductance behavior. and are
matching networks and is the characteristic impedance.
The total gatewidth mm,
which equals the width of the single reference LDMOS device.
For the analysis, we assume that the total drain current can be
modeled as a single current source, which is expressed as

(3)

In this equation, is the model of the drain current
source of the 12-mm LDMOS device described in Section II.
Again, we break down our Taylor-series expansion after the fifth
term and only consider the following odd terms:

(4)

The Taylor coefficients ( is a positive odd integer) de-
pend on and the bias offsets , shown in
(5), at the bottom of this page. If we now substitute this expres-
sion in (2), we get an expression for IM3, which depends on

and and . The complete model was
optimized manually in MAPLE [13] by lowering and
versus to obtain a square-law approximated – re-
lationship and low IM3 versus input signal . The gatewidths
of the devices are mm, mm, mm,

(5)
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Fig. 7. Modeled odd-order Taylor coefficients of the single 12-mm (solid
lines) and optimized distributed LDMOS device (dotted lines).

Fig. 8. Predicted IM3 versusV of the single (see Fig. 4) and optimized
distributed device at two different bias conditions, as calculated by (2).

and mm and the bias offsets are V,
V, V, and V, respectively.

We also observe that some devices are individually biased more
toward class A and some more toward class B. Fig. 7 shows the
odd-order Taylor coefficients , , and of the refer-
ence device (see Fig. 3) together with those of the optimized
distributed1 device. Fig. 8 shows the predicted IM3 versus
for the optimized distributed device and the reference device
for two situations. First, both the devices are biased in the zero
crossing of to obtain the lowest distortion at small-signal
levels. Secondly, both the devices are biased 0.1 V above the
zero crossing to show that the relative improvement of IM3 does
not only occur at a single-bias condition. However, the improve-
ment is more pronounced when the devices are biased near the
zero crossing.

Note that the model used in the foregoing analysis is a simpli-
fied view of reality; in practice, other nonlinearities (like ,

, and ) will also contribute to the distortion proper-
ties of the amplifier. For this reason, proper selection of the
gate-bias voltages proves to be a nontrivial task using the pre-
viously discussed model. Until now, the amplifier is operated
in the pre-compression region (10–12-dB OPBO) where the
transconductance nonlinearity is dominant. However, if the am-
plifier is operated closer to compression, the influence of
and also becomes notable, yielding severe AM–AM and
AM–PM conversion. With respect to , we have found from
simulations that the distributed device concept also yields im-
provement for the AM–PM conversion in the pre-compression

1The term “distributed device” will be used in the remainder of this paper in
the sense that it is comprising of parallel-connected devices having a gatewidth
equal to the gatewidth of the single reference device of 12 mm.

region. The design problem is now to find the optimum param-
eters ( and ), which give the best overall
linearity improvement in the OPBO region. In order to over-
come these difficulties and find the optimum values of the rel-
ative large number of design parameters, we have developed a
linearity optimization routine to obtain the desired amplifier lin-
earity in the experiment. The proposed method is based on the
CPSR and is discussed in Section IV.

IV. EXPERIMENTAL DETERMINATION OF THE

DESIGN PARAMETERS

This section describes an optimization method for linearity
in terms of IMD by minimizing AM–AM and AM–PM conver-
sion. IMD can be related to AM–AM and AM–PM conversion
by means of the CPSR [6]. To justify this approach with respect
to the analysis in Sections II and III, we examine the AM–AM
conversion using our simplified power series analysis by sub-
stituting a single-tone signal in (1). This
yields an output signal at the fundamental frequency[2] as
follows:

(6)

The term in square brackets represents the AM–AM conversion
as function of the input signal amplitude. Consequently, (6)
contains all the odd-order Taylor coefficients, which also deter-
mine IM3 in (2) motivating the use of the CPSR. In a similar
way, charge nonlinearities ( ) are automatically included in
the AM–PM conversion.

A. CPSR Model for IM3 Calculation

The CPSR described in [6] assumes that the amplifier does
not have memory effects related to the time constant of the IF
component in a two-tone test. This frequency compo-
nent causes bias modulation and should be properly terminated
[2], [14], [15]. Furthermore, the CPSR assumes the passband of
the amplifier to be relatively narrow with a constant frequency
response. In practical amplifiers for wireless telecommunica-
tion, these conditions are met and IM3 is completely charac-
terized by the AM–AM and AM–PM conversion.

Our method for determining IM3 can be outlined as follows.
First, we obtain AM–AM and AM–PM conversion by mea-
suring versus input power using a vector network analyzer
(VNA) and rewrite the CPSR model to fit the data. Secondly,
we obtain the required CPSR coefficients using a least square
method. Lastly, we compute the IM3 as function of power up
to the gain compression region using the CPSR model. Fig. 9
shows a black-box representation of the power amplifier used
in the following analysis.

1) Characterizing AM–AM and AM–PM Conver-
sion: Equation (7) formulates the general expression for
the complex power series in terms of voltage [6]

(7)
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Fig. 9. Black-box representation of a nonlinear amplifier characterized by its
AM–AM and AM–PM conversion.

In this equation, , are the input and output voltage
related to , is the linear voltage gain,

are the complex coefficients, is the Hilbert
transform of , is the delay time of the amplifier, and
is a positive oddinteger. In order to relate the AM–AM and
AM–PM conversion to the model in (7), we substitute a single
sinusoid in (7) and set to zero since we
are only interested in deviations of the phase response. Now, (8)
yields the generalized expression of the amplifier output voltage

at the fundamental frequency besides other spectral com-
ponents. We do not consider these components since all the in-
formation for odd-order distortion is enclosed by the AM–AM
and AM–PM conversion

(8)

in which is the binomial coefficient.

This trigonometric expression is rewritten in its more convenient
form, as expressed in (9), as follows:

or

(9)

where

(10)

and

(11)

In fact, represent the AM–AM conversion normalized to
a voltage gain of one and represents the AM–PM con-
version.

2) Obtaining the Complex Coefficients:To solve for the
complex coefficients needed for the CPSR, we have to fit the
measured large-signal to (10) and (11). If we write the
input and output voltage in polar format, is defined as

(12)

If we combine (10) and (11) and (12), we can write the following
system of equations:

(13)

The complex coefficients can be determined
by solving the system of equations by means of a least square
method and is determined from the measured of the first
point in the power sweep (see the Appendix). A good fit was
obtained up to the compression region for . This is in
strong contrast to [6], which only uses a third-order approxima-
tion to handle weak nonlinearities.

3) Calculation of IM3: In Section II, we already defined
IM3 as the ratio of the signal output at the frequency
to the signal output at the fundamental frequency. To obtain
an expression for IM3, we substitute a two-tone signal

in (7). Equation (14) gives the gen-
eralized expression for IM3 as function of input voltage am-
plitude using the CPSR model and the complex coefficients

calculated previously from single-tone data

[dBc] (14)

where
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Fig. 10. Hybrid implementation of the linear distributed amplifier concept.

and

B. Experimental Multivariable Optimization of the Amplifier

We first discuss the features of the novel LDMOS power am-
plifier and then we explain the linearity optimization routine in
more detail. Fig. 10 shows a hybrid implementation of the com-
plete distributed device amplifier. From a matching point-of-
view, the parallel-connected transistors can be treated as one
single transistor as long as the devices are closely placed to-
gether with respect to the wavelength. Pre-matching is included
on the circuit board in order to deal with the typically low im-
pedances of LDMOS devices. Shorted transmission lines
were used to isolate the RF signal from the bias sources. Supply
lines were decoupled using 10-F surface mount device (SMD)
capacitors in order to minimize bias-modulation effects and re-
lated memory effects.

The complete amplifier was embedded in the measurement
setup, as shown in Fig. 11. This setup consists of an HP 8753E
network analyzer to measure versus power, a linear booster
amplifier to generate the required input power, directional cou-
plers to sense the input and output power, an HP 4145B bias
source to bias the individual LDMOS devices, and a computer,
which controls the instruments through the HP VEE software.
The optimum load was determined manually by slug tuners
at GHz using a single 12-mm LDMOS device in
class-AB operation. This load condition has been used as ref-
erence for the distributed amplifier concept.

The previously discussed CPSR model was implemented in
HP VEE, which is a tool capable of performing automatic data
acquisition and data processing. The routine was used for the
final optimization of the bias parameters of the novel class-AB
LDMOS power amplifier [4]. Fig. 12 shows a flowchart of the

Fig. 11. Computer-controlled measurement setup for optimizing gate-bias
voltages for minimum IM3 over a wide power range.

Fig. 12. Flowchart of the linearity optimization routine in HP VEE.

optimization routine. We initially begin with the bias offsets ob-
tained from the analysis in Section III. The offsets are then man-
ually changed until the IM3 versus power is minimized over a
wide dynamic range.

Fig. 13(a) and (b) shows the result before and after, respec-
tively, optimizing IM3 versus signal power. Fig. 13(a) shows the
case in which the bias offsets were set to zero ( mA)
and Fig. 13(b) shows the case in which the bias offsets were
optimized for maximum flat AM–AM and AM–PM conversion
and low IM3 versus power ( mA). The dotted curves
denote the measured IM3 versus output power using a spec-
trum analyzer, also for verification of the proposed method. The
final offset values were V, V,

V, and V. Note that the drain cur-
rent is slightly higher than the conventional class-AB operation,
but this is because some individual devices are biased closer to
class A. We tested the same bias condition ( mA) also
for the single 12-mm device amplifier and found a worse IM3
behavior in comparison with the optimum class-AB operation
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(a)

(b)

Fig. 13. Measured and predicted IM3, AM–AM, and AM–PM versus output
power atf = 1:95 GHz in class-AB operation for the: (a) single device and
(b) distributed device after optimizing�V ��V of the individual devices.

Fig. 14. Measured IM3 versus peak-envelope (pep) output power of
the conventional and distributed amplifier design atf = 1:95 GHz and
�f = 200 kHz.

at mA, which is the IM3 sweet spot for this particular
device.

V. FINAL RESULTS

Fig. 14 shows the improvement in IM3 versus output power
for the optimum biased distributed LDMOS-device amplifier to-
gether with the optimum biased 12-mm LDMOS-device ampli-
fier in class-A and class-AB operation. The output load at the
fundamental was the same for all amplifiers. Note that, in the

Fig. 15. Measured transducer gain (G ) and ACPR of a WCDMA signal
versus average (avg) output power of the conventional and distributed amplifier
design atf = 1:95 GHz.

TABLE I
COMPARISONRESULTS FORDIFFERENTACPR SPECS

backoff region, an improvement of 20 dB has been achieved in
comparison with a conventional class-AB design. We can also
see the disadvantage of using class-A operation with respect
to linearity and efficiency at higher output powers. We con-
clude the experiment with the most rigorous test by applying
a WCDMA test signal according to the 3GPP standard [9] at
1.95 GHz. Fig. 15 shows a significant improvement in ACPR of
the distributed device amplifier compared to the single device
amplifier under class-AB bias condition. In fact, we even out-
perform the linearity of the amplifier in class-A operation.

Table I summarizes the results with respect to the45 dBc
ACPR specification intended for final stages, as well as for a
10-dB better ACPR level intended for driver stages. These re-
sults show that by using the distributed amplifier configuration,
it is possible to create base-station power amplifiers, which have
a significantly better linearity and efficiency than their class-A
and class-AB counterparts and require less OPBO from P1dB.

VI. CONCLUSION

We have demonstrated that the square-law approximated
LDMOS power amplifier yields better linearity than conven-
tional class-A or class-AB single-device LDMOS amplifiers.
The bias parameters were optimized experimentally for
maximum linearity over a large dynamic range by using the
CPSR model to predict IM3 versus power. Measurements have
demonstrated a linearity improvement over 20 dB in IM3 and
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10 dB in ACPR. The concept also allows for operating the
distributed LDMOS closer to P1dB, simultaneously providing
higher amplifier efficiency and linearity. Therefore, the concept
is perfectly suited for both driver and final-stage amplifiers in a
WCDMA base-station application.

APPENDIX

In order to calculate the complex coefficients, (13) has to be
solved for values of the input voltage amplitude. We do so
by writing (13) in matrix form, as shown in (15), at the bottom
of this page, in which corresponds to the number of points in
the power sweep, as performed by the network analyzer,is the
order of the complex power series,is the vector containing the
desired complex coefficients, andis the vector containing the

measured AM–AM and AM–PM versus input voltage. Equation
(15) can be solved by using the least square method in matrix
notation

(16)

A good fit was obtained up to the compression region for
and .
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where

...
...
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...
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...

and

...
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